
INTEGRATING SYHUNT INTO GITLAB
The information in this document applies to version 6.9.8.2 of Syhunt Hybrid.

INTRODUCTION

Launching Syhunt scans from within a GitLab CI YML script is simple and straightforward,
allowing you to integrate the Syhunt Dynamic, Syhunt Code and Syhunt Mobile security
testing tools into your continuous delivery pipeline and security dashboard, schedule scans
and more. You can also configure GitLab issue trackers in Syhunt, allowing vulnerabilities to
be submitted to the issues area of projects.

The following example Gitlab CI YML script will scan the current repository source code, failing the job if

medium or high vulnerabilities are identified. In addition to this, it attachs a PDF vulnerability report to the

pipeline job artifacts and adds the identified vulnerabilities to GitLab's security dashboard.

syhunt_test:
 script:
 - Start-CodeScan -pfcond 'fail-if:risk=mediumup' -output 'report.pdf' -outputex 'gl-sast-report.json'
 artifacts:
 reports:
 sast: gl-sast-report.json
 paths:
 - report.pdf
 when: on_failure
 tags:
 - syhunt

ACTIVATING A SYHUNT RUNNER

Syhunt Runner is a CI service that will receive scan requests, execute scans and communicate the scan

https://www.syhunt.com/en/index.php

results with GitLab.

IMPORTANT: For security and performance reasons, it is advised that the Runner is installed on a

separated virtual machine or dedicated physical machine.

1. First, go into your GitLab project settings and access the CI (Continuous Integration) options:

1. Click Settings

2. Click CI / CD

3. Expand Runners

4. Scroll down to Set up a specific Runner manually

5. Save the registration token to a safe location. You will need it later below.

2. Install with its default settings Git for Windows, which can be downloaded at https://gitforwindows.org/

3. Install with its default settings Syhunt Hybrid (syhunt-hybrid-6.9.14.1.exe)

4. Download and run the Syhunt Runner (syhunt-runner-14.8.0.exe). After launching the setup, you will be

prompted for the runner registration information.

1. Paste the registration token you copied in the token text field and click Next to continue and complete

the install.

After finishing installing, return to GitLab, and the Runners section we were just on, and press F5 to refresh

the screen. The syhuntrunner should now be registered for this project. You will see it listed under Runners

activated for this project at the bottom of the page, as shown in the screenshot below.

Syhunt is now ready to be called from CI YML scripts! See examples below

ADDING SYHUNT TO YOUR CI YML SCRIPT

If you don't have a CI YML file in your repository, go to Project overview and click Set up CI/CD. This will

create a .gitlab-ci.yml file within the repository.

SAST Example - The following example Gitlab CI YML script will scan the current repository source code,

failing the job if medium or high vulnerabilities are identified. In addition to this, it attachs a PDF vulnerability

report to the pipeline job artifacts and adds the identified vulnerabilities to GitLab's security dashboard.

https://gitforwindows.org/

syhunt_test:
 stage: test
 script:
 - Start-CodeScan -pfcond 'fail-if:risk=mediumup' -output 'report.pdf' -outputex 'gl-sast-report.json'
 artifacts:
 reports:
 sast: gl-sast-report.json
 paths:
 - report.pdf
 when: on_failure
 tags:
 - syhunt

DAST Example - The following example Gitlab CI YML script will scan the live web application after going

into production, failing the job if medium or high vulnerabilities are identified. In addition to this, it attachs a

PDF vulnerability report to the pipeline job artifacts and adds the identified vulnerabilities to GitLab's security

dashboard.

production:
stage: deploy
 script:
 - Start-DynamicScan -target 'www.productionurl.com' -pfcond 'fail-if:risk=mediumup' -output 'report.pdf'
 artifacts:
 reports:
 sast: gl-dast-report.json
 paths:
 - report.pdf
 when: on_failure
 tags:
 - syhunt
only:
 - tags

Additional examples:

SAST Example - Scan local directory/repository
Start-CodeScan -pfcond "fail-if:risk=mediumup"

SAST Example - Scan a remote project repository
$MyProject = @{
 target = 'https://github.com/syhunt/vulnphp.git';
 branch = 'main';
 pfcond = 'fail-if:risk=mediumup';
 output = 'report.pdf'
}
Start-CodeScan @MyProject

DAST Example - Scan URL
$MyWebsite= @{
 target = 'https://www.somewebsite.com';
 pfcond = 'fail-if:risk=mediumup';
 output = 'report.pdf'
}
Start-DynamicScan @MyWebsite

INTEGRATING WITH GITLAB'S SECURITY DASHBOARD

Syhunt will generate a GitLab-compatible vulnerability report file if the outputex parameter is simply set to:

SAST: gl-sast-report.json or anyfilename.gls.json

DAST: gl-dast-report.json or anyfilename.gld.json

Remember to add the filename to artifacts.reports.sast or artifacts.reports.dast to your CI YML file like

shown in the first example above to activate the integration.

At the present time, GitLab will only add successfull pipelines to the security dashboard and vulnerability

report areas of a project. This means that if you want all the identified vulnerabilities to be displayed within

the dashboard, you should omit the pfcond parameter from the script line that calls Syhunt. Alternatively, if

you provide a pass fail condition high and no high vulnerabilities are found, all medium-to-info identified

vulnerabilities will be displayed within the dashboard.

This does not applies to the Security tab of Pipelines, the Security tab will always display all the

vulnerabilities in both successful or failed status - however, if the pipeline failed due to a matched pass fail

condition, you may see GitLab inconsistently show 0 vulnerabilities while still listing the identified

vulnerabilities. This is a minor bug unaddressed by the GitLab team.

Important tip: If this is the first scan against a large codebase, it is recommended to scan your application

without the dashboard integration activated to make sure you don´t have a large number of vulnerabilities. If

https://gitlab.com/gitlab-org/gitlab/-/issues/352157

a large number of vulnerabilities is found, improve the security state of the application by fixing the initial

batch of vulnerabilities reported by Syhunt and only then enable the dashboard integration.

START-DYNAMICSCAN FUNCTION

Syhunt Dynamic must be launched through the Start-DynamicScan() function. The following parameters

must be provided when calling the Start-DynamicScan() function:

target (required) - the target URL to be scanned (eg. http://www.somesite.com)

huntmethod (optional) - the Hunt Method to be used during the scan, If omitted, the default method will

be used.

pfcond (optional) - allows the script to fail with proper exit code if a certain condition is met. See below a

list of available pass/fail conditions.

tracker (optional) - the name of previously created tracker or a dynamically generated tracker that will

receive a summary of identified vulnerabilities at the end of the scan. Examples

output (optional) - allows to set an output filename (eg. report.pdf or report.html).

outputex (optional) - allows to set a second output filename (eg. export.json).

verbmode (optional) - $false by default. If changed to true, turns on verbose mode allowing information

other than error and basic info to be printed.

genrep (optional) - $true by default. If changed to false, Syhunt will not generate an output file.

redirIO (optional) - $true by default. If changed to false, input and output from the Syhunt scanner will

not be redirected to the console.

timelimit (optional) - sets the maximum scan time limit (default: no limit). If the time is reached, the scan

is aborted. Examples: 1d, 3h, 2h30m, 50m

When using the output or outputex parameters, all output formats supported by Syhunt are available. The

report or export will be saved to the current working directory, unless a full path name is provided.

Examples:

Example 1 - Scan URL with single line
Start-DynamicScan -target 'https://www.somewebsite.com' -pfcond 'fail-if:risk=mediumup'

Example 2 - Scan URL
$MyWebsite= @{
 target = 'https://www.somewebsite.com';
 pfcond = 'failifriskmedium';
 output = 'report.pdf'
}
Start-DynamicScan @MyWebsite

http://www.somesite.com
https://www.syhunt.com/en/index.php?n=Docs.SyhuntHybridHuntMethods
https://www.syhunt.com/en/index.php?n=Docs.SyhuntIntegrationIssueTrackers#tracker_submit

START-CODESCAN FUNCTION

Syhunt Code must be launched through the Start-CodeScan() function. The following parameters can be

provided when calling the Start-CodeScan() function, all of which are optional:

target - the target URL of a project repository to be scanned, or a local source code directory or file. If

the target parameter is omitted, the current working directory is scanned.

branch - the repository branch to be scanned. If the branch parameter is omitted, the git client will fetch

the default branch.

huntmethod - the Hunt Method to be used during the scan, If omitted, the default method will be used.

pfcond - allows the script to fail with proper exit code if a certain condition is met. See below a list of

available pass/fail conditions.

tracker (optional) - the name of previously created tracker or a dynamically generated tracker that will

receive a summary of identified vulnerabilities at the end of the scan. Examples

output - allows to set an output filename (eg. report.pdf or report.html).

outputex - allows to set a second output filename (eg. export.json).

verbmode - $false by default. If changed to true, turns on verbose mode allowing information other than

error and basic info to be printed.

genrep - $true by default. If changed to false, Syhunt will not generate an output file.

redirIO - $true by default. If changed to false input and output from the Syhunt scanner will not be

redirected to the console.

timelimit (optional) - sets the maximum scan time limit (default: no limit). If the time is reached, the scan

is aborted. Examples: 1d, 3h, 2h30m, 50m

When using the output or outputex parameters, all output formats supported by Syhunt are available. The

report or export will be saved to the current working directory, unless a full path name is provided.

Examples:

Example 1 - Scan the current directory/repository
Start-CodeScan -pfcond "fail-if:risk=mediumup"

Example 2 - Scan a remote GIT project
Start-CodeScan -target "https://github.com/someuser/somerepo.git" -huntmethod "normal" -pfcond "fail-if:risk=mediumup"

Example 2 - Scan a remote Azure DevOps Services project
Start-CodeScan -target "https://dev.azure.com/user/projectname" -huntmethod "normal" -pfcond "fail-if:risk=mediumup"

Example 4 - Scan a specific local directory
Start-CodeScan -target "C:\www\" -huntmethod "normal" -pfcond "fail-if:risk=mediumup"

https://www.syhunt.com/en/index.php?n=Docs.SyhuntHybridHuntMethods
https://www.syhunt.com/en/index.php?n=Docs.SyhuntIntegrationIssueTrackers#tracker_submit

PASS/FAIL CONDITIONS

The following are the pass/fail conditions currently supported by Syhunt:

fail-if:risk=high - Fail if a High risk vulnerability or threat is found

fail-if:risk=mediumup - Fail if a Medium or High risk vulnerability or threat is found

fail-if:risk=lowup - Fail if a Low, Medium or High risk vulnerability or threat is found

ADVANCED RUNNER SETTINGS

Update the concurrent value for Runners in C:\SyhuntRunner\config.toml to allow multiple concurrent jobs

as detailed in advanced configuration details.

INTEGRATING WITH GITLAB ISSUES

Configuring an issue tracker is an easy task and vulnerabilities can be submitted to a specific project with

the click of a button.

Firstly, If you have not done so already, you have to create a personal access token with API access

permission:

1. Log in to GitLab.

2. In the upper-right corner, click your avatar and select Settings.

3. On the User Settings menu, select Access Tokens.

4. Choose a name and optional expiry date for the token.

5. Choose the API scope.

6. Click the Create personal access token button.

7. Save the personal access token somewhere safe. Once you leave or refresh the page, you won’t be able

to access it again.

https://docs.gitlab.com/runner/configuration/advanced-configuration.html

Finally, you have to add a GitLab tracker:

1. Click the Issue Trackers icon in the launcher toolbar in Syhunt. The Issue Trackers screen will open.

2. Click the Add Tracker icon in the Issue Trackers screen toolbar and choose the Add tracker: GitLab

menu option.

3. Enter a reference name for the new tracker (like MyProjectName) and hit OK. A preferences dialog

window will open.

4. Enter the GitLab project name. Format must be owner/repo.

5. Enter the GitLab Server URL, eg: https://gitlab.com/ or your own server URL.

6. Enter your GitLab personal access token and click the OK button.

The tracker is ready! Right click the item you just edited in the list and click the Submit Test Issue option. If

you configured everything properly, a test issue item should be created at

https://[gitlab_server]/[owner]/[repo]/issues . If not, you will see an error message giving a hint

of what needs to be done.

For more details on how to submit vulnerabilities to the GitLab tracker, see: Submitting Vulnerabilities To a

Tracker.

For additional product documentation, visit syhunt.com/docs

https://www.syhunt.com/en/index.php?n=Docs.SyhuntIntegrationIssueTrackers#tracker_submit
http://www.syhunt.com/docs

	INTEGRATING SYHUNT INTO GITLAB
	INTRODUCTION
	ACTIVATING A SYHUNT RUNNER
	ADDING SYHUNT TO YOUR CI YML SCRIPT
	INTEGRATING WITH GITLAB'S SECURITY DASHBOARD
	START-DYNAMICSCAN FUNCTION
	START-CODESCAN FUNCTION
	PASS/FAIL CONDITIONS
	ADVANCED RUNNER SETTINGS
	INTEGRATING WITH GITLAB ISSUES

